JUMP-means: Small-variance asymptotics for markov jump processes

Jonathan H. Huggins, Karthik Narasimhan, Ardavan Saeedi, Vikash K. Mansinghka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Markov jump processes (MJPs) are used to model a wide range of phenomena from disease progression to RNA path folding. However, maximum likelihood estimation of parametric models leads to degenerate trajectories and inferential performance is poor in nonpara-metric models. We take a small-variance asymptotics (SVA) approach to overcome these limitations. We derive the small-variance asymptotics for parametric and nonparametric MJPs for both directly observed and hidden state models. In the parametric case we obtain a novel objective function which leads to non-degenerate trajectories. To derive the nonparametric version we introduce the gamma-gamma process, a novel extension to the gamma-exponential process. We propose algorithms for each of these formulations, which we call JUMP-means. Our experiments demonstrate that JUMP-means is competitive with or outperforms widely used MJP inference approaches in terms of both speed and reconstruction accuracy.

Original languageEnglish (US)
Title of host publication32nd International Conference on Machine Learning, ICML 2015
EditorsFrancis Bach, David Blei
PublisherInternational Machine Learning Society (IMLS)
Pages693-701
Number of pages9
ISBN (Electronic)9781510810587
StatePublished - Jan 1 2015
Externally publishedYes
Event32nd International Conference on Machine Learning, ICML 2015 - Lile, France
Duration: Jul 6 2015Jul 11 2015

Publication series

Name32nd International Conference on Machine Learning, ICML 2015
Volume1

Other

Other32nd International Conference on Machine Learning, ICML 2015
CountryFrance
CityLile
Period7/6/157/11/15

All Science Journal Classification (ASJC) codes

  • Human-Computer Interaction
  • Computer Science Applications

Fingerprint Dive into the research topics of 'JUMP-means: Small-variance asymptotics for markov jump processes'. Together they form a unique fingerprint.

Cite this