Josephson vortices induced by phase twisting a polariton superfluid

Davide Caputo, Nataliya Bobrovska, Dario Ballarini, Michal Matuszewski, Milena De Giorgi, Lorenzo Dominici, Kenneth West, Loren N. Pfeiffer, Giuseppe Gigli, Daniele Sanvitto

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Quantum fluids of light are an emerging platform for energy-efficient signal processing, ultrasensitive interferometry and quantum simulators at elevated temperatures. Here we demonstrate all-optical control of the topological excitations in a large polariton condensate realizing the bosonic analogue of a long Josephson junction and inducing the nucleation of Josephson vortices. When a phase difference is imposed at the boundaries of the condensate, two extended regions become separated by a sharp phase jump of π radians and a solitonic depletion of the density, forming an insulating barrier with a suppressed order parameter. The superfluid behaviour—characterized by a smooth phase gradient across the system instead of the sharp phase jump—is recovered at higher polariton densities and is mediated by the nucleation of Josephson vortices within the barrier. Our results contribute to the understanding of dissipation and stability of elementary excitations in macroscale quantum systems.

Original languageEnglish (US)
Pages (from-to)488-493
Number of pages6
JournalNature Photonics
Volume13
Issue number7
DOIs
StatePublished - Jul 1 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Josephson vortices induced by phase twisting a polariton superfluid'. Together they form a unique fingerprint.

Cite this