Joint pushing and caching with a finite receiver buffer: Optimal policies and throughput analysis

Wei Chen, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Pushing and caching hold the promise of significantly increasing the throughput of content-centric wireless networks. However, the throughput gain of these techniques is limited by the buffer size of the receiver. To overcome this, this paper presents a Joint Pushing and Caching (JPC) method that jointly determines the contents to be pushed to, and to be removed from, the receiver buffer in each timeslot. An offline and two online JPC policies are proposed respectively based on noncausal, statistical, and causal content Request Delay Information (RDI), which predicts a user's request time for certain content. It is shown that the effective throughput of JPC is increased with the receiver buffer size and the pushing channel capacity. Furthermore, the causal feedback of user requests is found to greatly enhance the performance of online JPC without inducing much signalling overhead in practice.

Original languageEnglish (US)
Title of host publication2016 IEEE International Conference on Communications, ICC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479966646
DOIs
StatePublished - Jul 12 2016
Event2016 IEEE International Conference on Communications, ICC 2016 - Kuala Lumpur, Malaysia
Duration: May 22 2016May 27 2016

Publication series

Name2016 IEEE International Conference on Communications, ICC 2016

Other

Other2016 IEEE International Conference on Communications, ICC 2016
CountryMalaysia
CityKuala Lumpur
Period5/22/165/27/16

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'Joint pushing and caching with a finite receiver buffer: Optimal policies and throughput analysis'. Together they form a unique fingerprint.

Cite this