TY - JOUR
T1 - Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility
AU - Panayirci, Erdal
AU - Şenol, Habib
AU - Poor, H. Vincent
N1 - Funding Information:
Manuscript received August 22, 2009; accepted March 27, 2010. Date of publication April 15, 2010; date current version July 14, 2010. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Ta-Sung Lee. This work was supported by the NEWCOM++ Network of Excellence in Wireless Communications and WIMAGIC Strep projects funded through the EC 7th Framework Programs and by the U.S. National Science Foundation by Grant CNS-09-05398.
PY - 2010/8
Y1 - 2010/8
N2 - This paper is concerned with the challenging and timely problem of joint channel estimation, equalization, and data detection for uplink orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency selective and very rapidly time varying channels. The resulting algorithm is based on the space alternating generalized expectation maximization (SAGE) technique which is particularly well suited to multicarrier signal formats leading to a receiver structure that also incorporates interchannel interference (ICI) cancelation. In order to reduce the computational complexity of the algorithm, band-limited, discrete cosine orthogonal basis functions are employed to represent the rapidly time-varying fading channel by the discrete cosine serial expansion coefficients. It is shown that, depending on the normalized Doppler frequency, only a small number of expansion coefficients is sufficient to approximate the channel perfectly and there is no need to know the correlation function of the input signal. In this way, the resulting reduced dimensional channel coefficients are estimated and the data symbols detected iteratively with tractable complexity. The proposed SAGE joint detection algorithm updates the data sequences serially and the channel parameters are updated in parallel, leading to a receiver structure that also incorporates ICI cancelation. Computer simulations show that the cosine transformation represents the time-varying channel very effectively and the proposed algorithm has excellent symbol error rate and channel estimation performance even with a very small number of channel expansion coefficients employed in the algorithm, resulting in substantial reduction of the computational complexity.
AB - This paper is concerned with the challenging and timely problem of joint channel estimation, equalization, and data detection for uplink orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency selective and very rapidly time varying channels. The resulting algorithm is based on the space alternating generalized expectation maximization (SAGE) technique which is particularly well suited to multicarrier signal formats leading to a receiver structure that also incorporates interchannel interference (ICI) cancelation. In order to reduce the computational complexity of the algorithm, band-limited, discrete cosine orthogonal basis functions are employed to represent the rapidly time-varying fading channel by the discrete cosine serial expansion coefficients. It is shown that, depending on the normalized Doppler frequency, only a small number of expansion coefficients is sufficient to approximate the channel perfectly and there is no need to know the correlation function of the input signal. In this way, the resulting reduced dimensional channel coefficients are estimated and the data symbols detected iteratively with tractable complexity. The proposed SAGE joint detection algorithm updates the data sequences serially and the channel parameters are updated in parallel, leading to a receiver structure that also incorporates ICI cancelation. Computer simulations show that the cosine transformation represents the time-varying channel very effectively and the proposed algorithm has excellent symbol error rate and channel estimation performance even with a very small number of channel expansion coefficients employed in the algorithm, resulting in substantial reduction of the computational complexity.
KW - Intercarrier interference suppression
KW - joint data detection and channel estimation
KW - orthogonal frequency-division multiplexing (OFDM)
KW - rapidly varying wireless channels
KW - space alternating generalized expectation maximization (SAGE) algorithm
UR - http://www.scopus.com/inward/record.url?scp=77954596177&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954596177&partnerID=8YFLogxK
U2 - 10.1109/TSP.2010.2048317
DO - 10.1109/TSP.2010.2048317
M3 - Article
AN - SCOPUS:77954596177
SN - 1053-587X
VL - 58
SP - 4225
EP - 4238
JO - IEEE Transactions on Signal Processing
JF - IEEE Transactions on Signal Processing
IS - 8
M1 - 5447736
ER -