Abstract
The establishment of embryonic polarity is a crucial step in pattern formation and morphogenesis. In the fruitfly Drosophila melanogaster, embryonic polarity depends primarily on genes expressed in the female during oogenesis. Mutations in these 'maternal effect' genes can lead to major disruptions in normal pattern formation. Two classes of maternal genes essential for the establishment of polarity in the embryo have been identified. Lesions in one class, the 'bicaudal' genes, disrupt the anterior-posterior axis1; lesions in the other class disrupt dorsal-ventral polarity, and in the most extreme cases embryos fail to form any ventral or lateral structures. Genetic studies suggest that the anterior-posterior and dorsal-ventral axes may be independent as the defects observed in mutants from each class seem to be restricted to one axis only2. The dorsal (dl) locus2 is one of the maternal effect genes involved in the establishment of dorsal-ventral polarity. Homozygous dl females produce embryos exhibiting the mutant phenotype - complete lack of dorsal-ventral polarity in the strongest alleles - irrespective of the genotype of the father. Although dl is a maternal effect locus and must be expressed during oogenesis, the gene product, or a substance depending on the normal function of the dl gene, seems to be active early in embryogenesis, as the dl phenotype can be partially rescued by injection of cytoplasm from wild-type cleavage-stage embryos3,4. Here we report the molecular cloning of the dorsal locus and a study of its expression.
Original language | English (US) |
---|---|
Pages (from-to) | 262-265 |
Number of pages | 4 |
Journal | Nature |
Volume | 311 |
Issue number | 5983 |
DOIs | |
State | Published - 1984 |
All Science Journal Classification (ASJC) codes
- General