### Abstract

Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7, 22]. The theoretical question of “whether model-free algorithms can be made sample efficient” is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions. We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret Õ(H^{3}SAT), where S and A are the numbers of states and actions, H is the number of steps per episode, and T is the total number of steps. This sample efficiency matches the optimal regret that can be achieved by any model-based approach, up to a single H factor. To the best of our knowledge, this is the first analysis in the model-free setting that establishes T regret without requiring access to a “simulator.”

Original language | English (US) |
---|---|

Pages (from-to) | 4863-4873 |

Number of pages | 11 |

Journal | Advances in Neural Information Processing Systems |

Volume | 2018-December |

State | Published - Jan 1 2018 |

Externally published | Yes |

Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |

### All Science Journal Classification (ASJC) codes

- Computer Networks and Communications
- Information Systems
- Signal Processing

## Fingerprint Dive into the research topics of 'Is Q-learning provably efficient?'. Together they form a unique fingerprint.

## Cite this

*Advances in Neural Information Processing Systems*,

*2018-December*, 4863-4873.