Inverse shade trees for non-parametric material representation and editing

Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wojciech Matusik, Hanspeter Pfister, Ravi Ramamoorthi, Szymon Rusinkiewicz

Research output: Contribution to journalConference articlepeer-review

90 Scopus citations

Abstract

Recent progress in the measurement of surface reflectance has created a demand for non-parametric appearance representations that are accurate, compact, and easy to use for rendering. Another crucial goal, which has so far received little attention, is editability: for practical use, we must be able to change both the directional and spatial behavior of surface reflectance (e.g., making one material shinier, another more anisotropic, and changing the spatial "texture maps" indicating where each material appears). We introduce an Inverse Shade Tree framework that provides a general approach to estimating the "leaves" of a user-specified shade tree from high-dimensional measured datasets of appearance. These leaves are sampled 1- and 2-dimensional functions that capture both the directional behavior of individual materials and their spatial mixing patterns, In order to compute these shade trees automatically, we map the problem to matrix factorization and introduce a flexible new algorithm that allows for constraints such as non-negativity, sparsity, and energy conservation. Although we cannot infer every type of shade tree, we demonstrate the ability to reduce multi-gigabyte measured datasets of the Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) into a compact representation that may be edited in real time.

Original languageEnglish (US)
Pages (from-to)735-745
Number of pages11
JournalACM Transactions on Graphics
Volume25
Issue number3
DOIs
StatePublished - Jul 2006
EventACM SIGGRAPH 2006 - Boston, MA, United States
Duration: Jul 30 2006Aug 3 2006

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design

Keywords

  • BRDF
  • Data-Driven
  • Light Reflection Models
  • Matrix Factorization
  • Non-Parametric
  • SVBRDF

Fingerprint

Dive into the research topics of 'Inverse shade trees for non-parametric material representation and editing'. Together they form a unique fingerprint.

Cite this