@inproceedings{733342683f0c489cbb83268a5a3ee5d6,
title = "Intersecting Faults Simulation for Three-Dimensional Reservoir-Geomechanical Models",
abstract = "Faults are geological entities with thicknesses (of the order cm) several orders of magnitude smaller than the grid blocks (of the order 10 m) typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.",
author = "Prevost, {Jean H.} and Rubin, {Allan M.} and N. Sukumar",
year = "2017",
month = jan,
day = "1",
doi = "10.1061/9780784480779.247",
language = "English (US)",
series = "Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics",
publisher = "American Society of Civil Engineers (ASCE)",
pages = "1992--1999",
editor = "Patrick Dangla and Jean-Michel Pereira and Siavash Ghabezloo and Matthieu Vandamme",
booktitle = "Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics",
address = "United States",
note = "6th Biot Conference on Poromechanics, Poromechanics 2017 ; Conference date: 09-07-2017 Through 13-07-2017",
}