Intersecting Faults Simulation for Three-Dimensional Reservoir-Geomechanical Models

Jean H. Prevost, Allan M. Rubin, N. Sukumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Faults are geological entities with thicknesses (of the order cm) several orders of magnitude smaller than the grid blocks (of the order 10 m) typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

Original languageEnglish (US)
Title of host publicationPoromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics
EditorsPatrick Dangla, Jean-Michel Pereira, Siavash Ghabezloo, Matthieu Vandamme
PublisherAmerican Society of Civil Engineers (ASCE)
Pages1992-1999
Number of pages8
ISBN (Electronic)9780784480779
DOIs
StatePublished - 2017
Event6th Biot Conference on Poromechanics, Poromechanics 2017 - Paris, France
Duration: Jul 9 2017Jul 13 2017

Publication series

NamePoromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics

Other

Other6th Biot Conference on Poromechanics, Poromechanics 2017
Country/TerritoryFrance
CityParis
Period7/9/177/13/17

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Intersecting Faults Simulation for Three-Dimensional Reservoir-Geomechanical Models'. Together they form a unique fingerprint.

Cite this