TY - GEN
T1 - Interactive error resilience beyond 2/7
AU - Efremenko, Klim
AU - Kol, Gillat
AU - Saxena, Raghuvansh R.
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/6/8
Y1 - 2020/6/8
N2 - Interactive error correcting codes can protect interactive communication protocols against a constant fraction of adversarial errors, while incurring only a constant multiplicative overhead in the total communication. What is the maximum fraction of errors that such codes can protect against? For the non-adaptive channel, where the parties must agree in advance on the order in which they communicate, Braverman and Rao prove that the maximum error resilience is 1/4 (STOC, 2011). Ghaffari, Haeupler, and Sudan (STOC, 2014) consider the adaptive channel, where the order in which the parties communicate may not be fixed, and give a clever protocol that is resilient to a 2/7 fraction of errors. This was believed to be optimal. We revisit this result, and show how to overcome the 2/7 barrier. Specifically, we show that, over the adaptive channel, every two-party communication protocol can be converted to a protocol that is resilient to 7/24 > 2/7 fraction of errors with only a constant multiplicative overhead to the total communication. The protocol is obtained by a novel implementation of a feedback mechanism over the adaptive channel.
AB - Interactive error correcting codes can protect interactive communication protocols against a constant fraction of adversarial errors, while incurring only a constant multiplicative overhead in the total communication. What is the maximum fraction of errors that such codes can protect against? For the non-adaptive channel, where the parties must agree in advance on the order in which they communicate, Braverman and Rao prove that the maximum error resilience is 1/4 (STOC, 2011). Ghaffari, Haeupler, and Sudan (STOC, 2014) consider the adaptive channel, where the order in which the parties communicate may not be fixed, and give a clever protocol that is resilient to a 2/7 fraction of errors. This was believed to be optimal. We revisit this result, and show how to overcome the 2/7 barrier. Specifically, we show that, over the adaptive channel, every two-party communication protocol can be converted to a protocol that is resilient to 7/24 > 2/7 fraction of errors with only a constant multiplicative overhead to the total communication. The protocol is obtained by a novel implementation of a feedback mechanism over the adaptive channel.
KW - Communication Complexity
KW - Error Resilience
KW - Interactive Coding
UR - http://www.scopus.com/inward/record.url?scp=85086764027&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086764027&partnerID=8YFLogxK
U2 - 10.1145/3357713.3384320
DO - 10.1145/3357713.3384320
M3 - Conference contribution
AN - SCOPUS:85086764027
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 565
EP - 578
BT - STOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
A2 - Makarychev, Konstantin
A2 - Makarychev, Yury
A2 - Tulsiani, Madhur
A2 - Kamath, Gautam
A2 - Chuzhoy, Julia
PB - Association for Computing Machinery
T2 - 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020
Y2 - 22 June 2020 through 26 June 2020
ER -