Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes

Susan R. Hopkins, Robert Blair Schoene, William R. Henderson, Roger G. Spragg, Thomas R. Martin, John B. West

Research output: Contribution to journalArticle

189 Scopus citations

Abstract

The blood-gas barrier must be very thin to allow gas exchange and it is therefore subjected to high mechanical stresses when the capillary pressure rises. In some animals, such as the thoroughbred race-horse during intense exercise, the stresses are so large that the capillaries fail and bleeding occurs. We tested the hypothesis that, in elite human athletes, the high capillary pressure that occurs during severe exercise alters the structure and function of the blood-gas barrier. We performed bronchoalveolar lavage (BAL) in six healthy athletes, who had a history suggestive of lung bleeding, 1 h after a 7-min cycling race simulation and four normal sedentary control subjects who did not exercise before BAL. The athletes had higher (p < 0.05) concentrations of red blood cells (0.51 x 105 versus 0.01 x 105 · ml- 1), total protein (128.0 versus 94.1 μg/ml), albumin (65.6 versus 53.0 μg/ml), and leukotriene B4 (LTB4) (243 versus 0 pg/ml) in BAL fluid than control subjects. The proportion of neutrophils was similar in athletes and control subjects but the proportion of lymphocytes in BAL fluid was reduced (p < 0.05). There were no differences in levels of surfactant apoprotein A, tumor necrosis factor bioactivity, lipopolysaccharide, or interleukin-8 (IL- 8) between groups. These results show that brief intense exercise in athletes with a history suggestive of lung bleeding alters blood-gas barrier function resulting in higher concentrations of red cells and protein in BAL fluid. The lack of activation of proinflammatory pathways (except LTB4) in the airspaces supports the hypothesis that the mechanism for altered blood-gas barrier function is mechanical stress.

Original languageEnglish (US)
Pages (from-to)1090-1094
Number of pages5
JournalAmerican Journal of Respiratory and Critical Care Medicine
Volume155
Issue number3
DOIs
StatePublished - Jan 1 1997

All Science Journal Classification (ASJC) codes

  • Pulmonary and Respiratory Medicine
  • Critical Care and Intensive Care Medicine

Fingerprint Dive into the research topics of 'Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes'. Together they form a unique fingerprint.

  • Cite this