Integration of contractile forces during tissue invagination

Adam C. Martin, Michael Gelbart, Rodrigo Fernandez-Gonzalez, Matthias Kaschube, Eric F. Wieschaus

Research output: Contribution to journalArticlepeer-review

402 Scopus citations

Abstract

Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchetlike stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior-posterior (a-p) embryonic axis. Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supracellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.

Original languageEnglish (US)
Pages (from-to)735-749
Number of pages15
JournalJournal of Cell Biology
Volume188
Issue number5
DOIs
StatePublished - Mar 8 2010

All Science Journal Classification (ASJC) codes

  • Cell Biology

Fingerprint

Dive into the research topics of 'Integration of contractile forces during tissue invagination'. Together they form a unique fingerprint.

Cite this