TY - JOUR
T1 - Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling
AU - Kristensen, Vessela N.
AU - Vaske, Charles J.
AU - Ursini-Siegel, Josie
AU - Van Loo, Peter
AU - Nordgard, Silje H.
AU - Sachidanandamh, Ravi
AU - Sørlie, Therese
AU - Wärnberg, Fredrik
AU - Haakensen, Vilde D.
AU - Helland, Åslaug
AU - Naume, Bjørn
AU - Perou, Charles M.
AU - Haussler, David
AU - Troyanskaya, Olga G.
AU - Børresen-Dale, Anne Lise
PY - 2012/2/21
Y1 - 2012/2/21
N2 - We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, micro-RNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24-38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by lowor high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between lowand high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival.
AB - We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, micro-RNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24-38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by lowor high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between lowand high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival.
KW - Functional genomics
KW - Integrated molecular data
KW - Omics
KW - Perturbated pathway
UR - http://www.scopus.com/inward/record.url?scp=84857417363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857417363&partnerID=8YFLogxK
U2 - 10.1073/pnas.1108781108
DO - 10.1073/pnas.1108781108
M3 - Article
C2 - 21908711
AN - SCOPUS:84857417363
SN - 0027-8424
VL - 109
SP - 2802
EP - 2807
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 8
ER -