Intact reinforcement learning but impaired attentional control during multidimensional probabilistic learning in older adults

Reka Daniel, Angela Radulescu, Yael Niv

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

To efficiently learn optimal behavior in complex environments, humans rely on an interplay of learning and attention. Healthy aging has been shown to independently affect both of these functions. Here, we investigate how reinforcement learning and selective attention interact during learning from trial and error across age groups. We acquired behavioral and fMRI data from older and younger adults (male and female) performing two probabilistic learning tasks with varying attention demands. Although learning in the unidimensional task did not differ across age groups, older adults performed worse than younger adults in the multidimensional task, which required high levels of selective attention. Computational modeling showed that choices of older adults are better predicted by reinforcement learning than Bayesian inference, and that older adults rely more on reinforcement learning-based predictions than younger adults. Conversely, a higher proportion of younger adults’ choices was predicted by a computationally demanding Bayesian approach. In line with the behavioral findings, we observed no group differences in reinforcement-learning related fMRI activation. Specifically, prediction-error activation in the nucleus accumbens was similar across age groups, and numerically higher in older adults. However, activation in the default mode was less suppressed in older adults in for higher attentional task demands, and the level of suppression correlated with behavioral performance. Our results indicate that healthy aging does not significantly impair simple reinforcement learning. However, in complex environments, older adults rely more heavily on suboptimal reinforcement-learning strategies supported by the ventral striatum, whereas younger adults use attention processes supported by cortical networks.

Original languageEnglish (US)
Pages (from-to)1084-1096
Number of pages13
JournalJournal of Neuroscience
Volume40
Issue number5
DOIs
StatePublished - Jan 29 2020

All Science Journal Classification (ASJC) codes

  • General Neuroscience

Keywords

  • Aging
  • Attention
  • Default mode network
  • FMRI
  • Nucleus accumbens
  • Reinforcement learning

Fingerprint

Dive into the research topics of 'Intact reinforcement learning but impaired attentional control during multidimensional probabilistic learning in older adults'. Together they form a unique fingerprint.

Cite this