TY - JOUR
T1 - Initiation and propagation of calcium-dependent action potentials in a coupled network of olfactory interneurons
AU - Wang, Jing W.
AU - Denk, Winfried
AU - Flores, Jorge
AU - Gelperin, Alan
PY - 2001
Y1 - 2001
N2 - Coherent oscillatory electrical activity and apicalbasal wave propagation have been described previously in the procerebral (PC) lobe, an olfactory center of the terrestrial slug Limax maximus. In this study, we investigate the physiological basis of oscillatory activity and wave propagation in the PC lobe. Calcium green dextran was locally deposited in the PC lobe; this led to cellular uptake and transport of dye by bursting and nonbursting neurons of the PC lobe. The change of intracellular calcium concentration was measured at several different positions in neurites of individual bursting neurons in the PC lobe with a two-photon laser-scanning microscope. Fluorescence measurements were also made from neurons intracellularly injected with calcium green-1. Two different morphological classes of bursting neurons were found, varicose (VB) and smooth (SB). Our results from concurrent optical and intracellular recordings suggest that Ca2+ is the major carrier for the inward current during action potentials of bursting neurons. Intracellular recordings from bursting neurons with nystatin perforated-patch electrodes made while simultaneously recording the local field potential (LFP) with extracellular electrodes indicate that the burster spikes are precisely phase-locked to the periodic LFP events. By referencing successive calcium measurements to the common LFP signal, we could therefore accurately determine the relative timing of calcium transients at different points along a neurite. Measuring the relation of temporal to spatial differences allowed us to estimate the velocity of action potential propagation, which was 4.3 ± 0.2 (SE) mm/s in VBs, and 1.3 ± 0.2 mm/s in SB.
AB - Coherent oscillatory electrical activity and apicalbasal wave propagation have been described previously in the procerebral (PC) lobe, an olfactory center of the terrestrial slug Limax maximus. In this study, we investigate the physiological basis of oscillatory activity and wave propagation in the PC lobe. Calcium green dextran was locally deposited in the PC lobe; this led to cellular uptake and transport of dye by bursting and nonbursting neurons of the PC lobe. The change of intracellular calcium concentration was measured at several different positions in neurites of individual bursting neurons in the PC lobe with a two-photon laser-scanning microscope. Fluorescence measurements were also made from neurons intracellularly injected with calcium green-1. Two different morphological classes of bursting neurons were found, varicose (VB) and smooth (SB). Our results from concurrent optical and intracellular recordings suggest that Ca2+ is the major carrier for the inward current during action potentials of bursting neurons. Intracellular recordings from bursting neurons with nystatin perforated-patch electrodes made while simultaneously recording the local field potential (LFP) with extracellular electrodes indicate that the burster spikes are precisely phase-locked to the periodic LFP events. By referencing successive calcium measurements to the common LFP signal, we could therefore accurately determine the relative timing of calcium transients at different points along a neurite. Measuring the relation of temporal to spatial differences allowed us to estimate the velocity of action potential propagation, which was 4.3 ± 0.2 (SE) mm/s in VBs, and 1.3 ± 0.2 mm/s in SB.
UR - http://www.scopus.com/inward/record.url?scp=0035130216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035130216&partnerID=8YFLogxK
U2 - 10.1152/jn.2001.85.2.977
DO - 10.1152/jn.2001.85.2.977
M3 - Article
C2 - 11160527
AN - SCOPUS:0035130216
SN - 0022-3077
VL - 85
SP - 977
EP - 985
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 2
ER -