Initial results from the InSight mission on Mars

W. Bruce Banerdt, Suzanne E. Smrekar, Don Banfield, Domenico Giardini, Matthew Golombek, Catherine L. Johnson, Philippe Lognonné, Aymeric Spiga, Tilman Spohn, Clément Perrin, Simon C. Stähler, Daniele Antonangeli, Sami Asmar, Caroline Beghein, Neil Bowles, Ebru Bozdag, Peter Chi, Ulrich Christensen, John Clinton, Gareth S. CollinsIngrid Daubar, Véronique Dehant, Mélanie Drilleau, Matthew Fillingim, William Folkner, Raphaël F. Garcia, Jim Garvin, John Grant, Matthias Grott, Jerzy Grygorczuk, Troy Hudson, Jessica C.E. Irving, Günter Kargl, Taichi Kawamura, Sharon Kedar, Scott King, Brigitte Knapmeyer-Endrun, Martin Knapmeyer, Mark Lemmon, Ralph Lorenz, Justin N. Maki, Ludovic Margerin, Scott M. McLennan, Chloe Michaut, David Mimoun, Anna Mittelholz, Antoine Mocquet, Paul Morgan, Nils T. Mueller, Naomi Murdoch, Seiichi Nagihara, Claire Newman, Francis Nimmo, Mark Panning, W. Thomas Pike, Ana Catalina Plesa, Sébastien Rodriguez, Jose Antonio Rodriguez-Manfredi, Christopher T. Russell, Nicholas Schmerr, Matt Siegler, Sabine Stanley, Eléanore Stutzmann, Nicholas Teanby, Jeroen Tromp, Martin van Driel, Nicholas Warner, Renee Weber, Mark Wieczorek

Research output: Contribution to journalReview article

21 Scopus citations

Abstract

NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander.

Original languageEnglish (US)
Pages (from-to)183-189
Number of pages7
JournalNature Geoscience
Volume13
Issue number3
DOIs
StatePublished - Mar 1 2020

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Initial results from the InSight mission on Mars'. Together they form a unique fingerprint.

  • Cite this

    Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson, C. L., Lognonné, P., Spiga, A., Spohn, T., Perrin, C., Stähler, S. C., Antonangeli, D., Asmar, S., Beghein, C., Bowles, N., Bozdag, E., Chi, P., Christensen, U., Clinton, J., ... Wieczorek, M. (2020). Initial results from the InSight mission on Mars. Nature Geoscience, 13(3), 183-189. https://doi.org/10.1038/s41561-020-0544-y