Information complexity density and simulation of protocols

Himanshu Tyagi, Shaileshh Venkatakrishnan, Pramod Viswanath, Shun Watanabe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A simulation of an interactive protocol entails the use of interactive communication to produce the output of the protocol to within a fixed statistical distance ". Recent works have proposed that the information complexity of the protocol plays a central role in characterizing the minimum number of bits that the parties must exchange for a successful simulation, namely the distributional communication complexity of simulating the protocol. Several simulation protocols have been proposed with communication complexity depending on the information complexity of the simulated protocol. However, in the absence of any general lower bounds for distributional communication complexity, the conjectured central role of information complexity is far from settled. We fill this gap and show that the distributional communication complexity of ϵ-simulating a protocol is bounded below by the ϵ-Tail λϵ of the information complexity density, a random variable with information complexity as its expected value. For protocols with bounded number of rounds, we give a simulation protocol that yields a matching upper bound. Thus, it is not information complexity but λϵ that governs the distributional communication complexity. As applications of our bounds, in the amortized regime for product protocols, we identify the exact second order term, together with the precise dependence on ϵ. For general protocols such as a mixture of two product protocols or for the amortized case when the repetitions are not independent, we derive a general formula for the leading asymptotic term. These results sharpen and significantly extend known results in the amortized regime. In the single-shot regime, our lower bound sheds light on the dependence of communication complexity on ". We illustrate this with an example that exhibits an arbitrary separation between distributional communication complexity and information complexity for all suficiently small ϵ.

Original languageEnglish (US)
Title of host publicationITCS 2016 - Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
PublisherAssociation for Computing Machinery, Inc
Pages381-391
Number of pages11
ISBN (Electronic)9781450340571
DOIs
StatePublished - Jan 14 2016
Externally publishedYes
Event7th ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016 - Cambridge, United States
Duration: Jan 14 2016Jan 16 2016

Publication series

NameITCS 2016 - Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science

Other

Other7th ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016
Country/TerritoryUnited States
CityCambridge
Period1/14/161/16/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Keywords

  • Information complexity
  • Interactive protocols
  • Simulation of protocols

Fingerprint

Dive into the research topics of 'Information complexity density and simulation of protocols'. Together they form a unique fingerprint.

Cite this