TY - GEN
T1 - Information complexity density and simulation of protocols
AU - Tyagi, Himanshu
AU - Venkatakrishnan, Shaileshh
AU - Viswanath, Pramod
AU - Watanabe, Shun
PY - 2016/1/14
Y1 - 2016/1/14
N2 - A simulation of an interactive protocol entails the use of interactive communication to produce the output of the protocol to within a fixed statistical distance ". Recent works have proposed that the information complexity of the protocol plays a central role in characterizing the minimum number of bits that the parties must exchange for a successful simulation, namely the distributional communication complexity of simulating the protocol. Several simulation protocols have been proposed with communication complexity depending on the information complexity of the simulated protocol. However, in the absence of any general lower bounds for distributional communication complexity, the conjectured central role of information complexity is far from settled. We fill this gap and show that the distributional communication complexity of ϵ-simulating a protocol is bounded below by the ϵ-Tail λϵ of the information complexity density, a random variable with information complexity as its expected value. For protocols with bounded number of rounds, we give a simulation protocol that yields a matching upper bound. Thus, it is not information complexity but λϵ that governs the distributional communication complexity. As applications of our bounds, in the amortized regime for product protocols, we identify the exact second order term, together with the precise dependence on ϵ. For general protocols such as a mixture of two product protocols or for the amortized case when the repetitions are not independent, we derive a general formula for the leading asymptotic term. These results sharpen and significantly extend known results in the amortized regime. In the single-shot regime, our lower bound sheds light on the dependence of communication complexity on ". We illustrate this with an example that exhibits an arbitrary separation between distributional communication complexity and information complexity for all suficiently small ϵ.
AB - A simulation of an interactive protocol entails the use of interactive communication to produce the output of the protocol to within a fixed statistical distance ". Recent works have proposed that the information complexity of the protocol plays a central role in characterizing the minimum number of bits that the parties must exchange for a successful simulation, namely the distributional communication complexity of simulating the protocol. Several simulation protocols have been proposed with communication complexity depending on the information complexity of the simulated protocol. However, in the absence of any general lower bounds for distributional communication complexity, the conjectured central role of information complexity is far from settled. We fill this gap and show that the distributional communication complexity of ϵ-simulating a protocol is bounded below by the ϵ-Tail λϵ of the information complexity density, a random variable with information complexity as its expected value. For protocols with bounded number of rounds, we give a simulation protocol that yields a matching upper bound. Thus, it is not information complexity but λϵ that governs the distributional communication complexity. As applications of our bounds, in the amortized regime for product protocols, we identify the exact second order term, together with the precise dependence on ϵ. For general protocols such as a mixture of two product protocols or for the amortized case when the repetitions are not independent, we derive a general formula for the leading asymptotic term. These results sharpen and significantly extend known results in the amortized regime. In the single-shot regime, our lower bound sheds light on the dependence of communication complexity on ". We illustrate this with an example that exhibits an arbitrary separation between distributional communication complexity and information complexity for all suficiently small ϵ.
KW - Information complexity
KW - Interactive protocols
KW - Simulation of protocols
UR - http://www.scopus.com/inward/record.url?scp=84966605253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966605253&partnerID=8YFLogxK
U2 - 10.1145/2840728.2840754
DO - 10.1145/2840728.2840754
M3 - Conference contribution
AN - SCOPUS:84966605253
T3 - ITCS 2016 - Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
SP - 381
EP - 391
BT - ITCS 2016 - Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
PB - Association for Computing Machinery, Inc
T2 - 7th ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016
Y2 - 14 January 2016 through 16 January 2016
ER -