Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit

Karin C. Knudson, Jacob L. Yates, Alexander C. Huk, Jonathan W. Pillow

Research output: Contribution to journalConference articlepeer-review

17 Scopus citations

Abstract

Many signals, such as spike trains recorded in multi-channel electrophysiological recordings, may be represented as the sparse sum of translated and scaled copies of waveforms whose timing and amplitudes are of interest. From the aggregate signal, one may seek to estimate the identities, amplitudes, and translations of the waveforms that compose the signal. Here we present a fast method for recovering these identities, amplitudes, and translations. The method involves greedily selecting component waveforms and then refining estimates of their amplitudes and translations, moving iteratively between these steps in a process analogous to the well-known Orthogonal Matching Pursuit (OMP) algorithm [11]. Our approach for modeling translations borrows from Continuous Basis Pursuit (CBP) [4], which we extend in several ways: by selecting a subspace that optimally captures translated copies of the waveforms, replacing the convex optimization problem with a greedy approach, and moving to the Fourier domain to more precisely estimate time shifts. We test the resulting method, which we call Continuous Orthogonal Matching Pursuit (COMP), on simulated and neural data, where it shows gains over CBP in both speed and accuracy.

Original languageEnglish (US)
Pages (from-to)1215-1223
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2
Issue numberJanuary
StatePublished - 2014
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: Dec 8 2014Dec 13 2014

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit'. Together they form a unique fingerprint.

Cite this