Inferring mass in complex scenes by mental simulation

Jessica B. Hamrick, Peter W. Battaglia, Thomas L. Griffiths, Joshua B. Tenenbaum

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

After observing a collision between two boxes, you can immediately tell which is empty and which is full of books based on how the boxes moved. People form rich perceptions about the physical properties of objects from their interactions, an ability that plays a crucial role in learning about the physical world through our experiences. Here, we present three experiments that demonstrate people's capacity to reason about the relative masses of objects in naturalistic 3D scenes. We find that people make accurate inferences, and that they continue to fine-tune their beliefs over time. To explain our results, we propose a cognitive model that combines Bayesian inference with approximate knowledge of Newtonian physics by estimating probabilities from noisy physical simulations. We find that this model accurately predicts judgments from our experiments, suggesting that the same simulation mechanism underlies both peoples’ predictions and inferences about the physical world around them.

Original languageEnglish (US)
Pages (from-to)61-76
Number of pages16
JournalCognition
Volume157
DOIs
StatePublished - Dec 1 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Experimental and Cognitive Psychology
  • Language and Linguistics
  • Developmental and Educational Psychology
  • Linguistics and Language
  • Cognitive Neuroscience

Keywords

  • Inference
  • Learning
  • Mental simulation
  • Physical reasoning
  • Probabilistic simulation

Fingerprint

Dive into the research topics of 'Inferring mass in complex scenes by mental simulation'. Together they form a unique fingerprint.

Cite this