TY - JOUR
T1 - Inferring learning rules from animal decision-making
AU - The International Brain Laboratory
AU - Ashwood, Zoe C.
AU - Roy, Nicholas A.
AU - Bak, Ji Hyun
AU - Pillow, Jonathan W.
N1 - Funding Information:
JWP was supported by grants from the Simons Collaboration on the Global Brain (SCGB AWD543027), the NIH BRAIN initiative (NS104899 and R01EB026946), and a U19 NIH-NINDS BRAIN Initiative Award (5U19NS104648).
Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - How do animals learn? This remains an elusive question in neuroscience. Whereas reinforcement learning often focuses on the design of algorithms that enable artificial agents to efficiently learn new tasks, here we develop a modeling framework to directly infer the empirical learning rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial changes in an animal’s policy, and decomposes those changes into a learning component and a noise component. Specifically, this allows us to: (i) compare different learning rules and objective functions that an animal may be using to update its policy; (ii) estimate distinct learning rates for different parameters of an animal’s policy; (iii) identify variations in learning across cohorts of animals; and (iv) uncover trial-to-trial changes that are not captured by normative learning rules. After validating our framework on simulated choice data, we applied our model to data from rats and mice learning perceptual decision-making tasks. We found that certain learning rules were far more capable of explaining trial-to-trial changes in an animal’s policy. Whereas the average contribution of the conventional REINFORCE learning rule to the policy update for mice learning the International Brain Laboratory’s task was just 30%, we found that adding baseline parameters allowed the learning rule to explain 92% of the animals’ policy updates under our model. Intriguingly, the best-fitting learning rates and baseline values indicate that an animal’s policy update, at each trial, does not occur in the direction that maximizes expected reward. Understanding how an animal transitions from chance-level to high-accuracy performance when learning a new task not only provides neuroscientists with insight into their animals, but also provides concrete examples of biological learning algorithms to the machine learning community.
AB - How do animals learn? This remains an elusive question in neuroscience. Whereas reinforcement learning often focuses on the design of algorithms that enable artificial agents to efficiently learn new tasks, here we develop a modeling framework to directly infer the empirical learning rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial changes in an animal’s policy, and decomposes those changes into a learning component and a noise component. Specifically, this allows us to: (i) compare different learning rules and objective functions that an animal may be using to update its policy; (ii) estimate distinct learning rates for different parameters of an animal’s policy; (iii) identify variations in learning across cohorts of animals; and (iv) uncover trial-to-trial changes that are not captured by normative learning rules. After validating our framework on simulated choice data, we applied our model to data from rats and mice learning perceptual decision-making tasks. We found that certain learning rules were far more capable of explaining trial-to-trial changes in an animal’s policy. Whereas the average contribution of the conventional REINFORCE learning rule to the policy update for mice learning the International Brain Laboratory’s task was just 30%, we found that adding baseline parameters allowed the learning rule to explain 92% of the animals’ policy updates under our model. Intriguingly, the best-fitting learning rates and baseline values indicate that an animal’s policy update, at each trial, does not occur in the direction that maximizes expected reward. Understanding how an animal transitions from chance-level to high-accuracy performance when learning a new task not only provides neuroscientists with insight into their animals, but also provides concrete examples of biological learning algorithms to the machine learning community.
UR - http://www.scopus.com/inward/record.url?scp=85099682961&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099682961&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85099682961
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -