Incremental reformulated automatic relevance determination

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

In this work, the relationship between the incremental version of sparse Bayesian learning (SBL) with automatic relevance determination (ARD)a fast marginal likelihood maximization (FMLM) algorithmand a recently proposed reformulated ARD scheme is established. The FMLM algorithm is an incremental approach to SBL with ARD, where the corresponding objective functionthe marginal likelihoodis optimized with respect to the parameters of a single component provided that the other parameters are fixed; the corresponding maximizer is computed in closed form, which enables a very efficient SBL realization. Wipf and Nagarajan have recently proposed a reformulated ARD (R-ARD) approach, which optimizes the marginal likelihood using auxiliary upper bounding functions. The resulting algorithm is then shown to correspond to a series of reweighted l 1-constrained convex optimization problems. This correspondence establishes and analyzes the relationship between the FMLM and R-ARD schemes. Specifically, it is demonstrated that the FMLM algorithm realizes an incremental approach to the optimization of the R-ARD objective function. This relationship allows deriving the R-ARD pruning conditions similar to those used in the FMLM scheme to analytically detect components that are to be removed from the model, thus regulating the estimated signal sparsity and accelerating the algorithm convergence.

Original languageEnglish (US)
Article number6203428
Pages (from-to)4977-4981
Number of pages5
JournalIEEE Transactions on Signal Processing
Volume60
Issue number9
DOIs
StatePublished - 2012

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • Automatic relevance determination
  • Fast marginal likelihood maximization
  • Sparse Bayesian learning

Fingerprint

Dive into the research topics of 'Incremental reformulated automatic relevance determination'. Together they form a unique fingerprint.

Cite this