Increasing stimulus similarity drives nonmonotonic representational change in hippocampus

Jeffrey Wammes, Kenneth A. Norman, Nicholas Turk-Browne

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Studies of hippocampal learning have obtained seemingly contradictory results, with manipulations that increase coactivation of memories sometimes leading to differentiation of these memories, but sometimes not. These results could potentially be reconciled using the nonmonotonic plasticity hypothesis, which posits that representational change (memories moving apart or together) is a U-shaped function of the coactivation of these memories during learning. Testing this hypothesis requires manipulating coactivation over a wide enough range to reveal the full U-shape. To accomplish this, we used a novel neural network image synthesis procedure to create pairs of stimuli that varied parametrically in their similarity in high-level visual regions that provide input to the hippocampus. Sequences of these pairs were shown to human participants during high-resolution fMRI. As predicted, learning changed the representations of paired images in the dentate gyrus as a U-shaped function of image similarity, with neural differentiation occurring only for moderately similar images.

Original languageEnglish (US)
Article numbere68344
JournaleLife
Volume11
DOIs
StatePublished - 2022

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Increasing stimulus similarity drives nonmonotonic representational change in hippocampus'. Together they form a unique fingerprint.

Cite this