TY - GEN
T1 - Incorporating side information in probabilistic matrix factorization with Gaussian processes
AU - Adams, Ryan Prescott
AU - Dahl, George E.
AU - Murray, Iain
PY - 2010
Y1 - 2010
N2 - Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there are additional covariates that can assist in prediction. For example, when modeling movie ratings, wemight know when the rating occurred, where the user lives, or what actors appear in the movie. It is dificult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the covariate space. The GP priors on these functions require them to vary smoothly and share information. We apply this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.
AB - Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there are additional covariates that can assist in prediction. For example, when modeling movie ratings, wemight know when the rating occurred, where the user lives, or what actors appear in the movie. It is dificult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the covariate space. The GP priors on these functions require them to vary smoothly and share information. We apply this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.
UR - http://www.scopus.com/inward/record.url?scp=80052416079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052416079&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80052416079
SN - 9780974903965
T3 - Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010
SP - 1
EP - 9
BT - Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010
PB - AUAI Press
ER -