In-flight performance of Spider's 280-GHz receivers

Elle C. Shaw, Peter A.R. Ade, Scott Akers, Mandana Amiri, Jason Austermann, James Beall, Daniel T. Becker, Steven J. Benton, Amanda S. Bergman, James J. Bock, John R. Bond, Sean A. Bryan, H. Cynthia Chiang, Carlo R. Contaldi, Rachel S. Domagalski, Olivier Doré, Shannon M. Duff, Adri J. Duivenvoorden, Hans K. Eriksen, Marzeih FarhangJeffrey P. Filippini, Laura M. Fissel, Aurelien A. Fraisse, Katherine Freese, Mathew Galloway, Anne E. Gambrel, Natalie N. Gandilo, Kenneth Ganga, Sho M. Gibbs, Suren Gourapura, Arpi Grigorian, Ricardo Gualtieri, Jón E. Gudmundsson, Mark Halpern, John Hartley, Matthew Hasselfield, Gene Hilton, Warren Holmes, Viktor V. Hristov, Zhiqi Huang, Johannes Hubmayr, Kent D. Irwin, William C. Jones, Asad Kahn, Zigmund D. Kermish, Cesiley King, Calvin L. Kuo, Amber R. Lennox, Jason S.Y. Leung, Steven Li, Thuy Vy T. Luu, Peter V. Mason, Jared May, Krikor Megerian, Lorenzo Moncelsi, Thomas A. Morford, Johanna M. Nagy, Rong Nie, Calvin B. Netterfield, Michael Nolta, Benjamin Osherson, Ivan L. Padilla, Alexandra S. Rahlin, Susan Redmond, Carl Reintsema, L. Javier Romualdez, John E. Ruhl, Marcus C. Runyan, Jamil A. Shariff, Corwin Shiu, Juan D. Soler, Xue Song, Simon Tartakovsky, Harald Thommesen, Amy Trangsrud, Carole Tucker, Anthony D. Turner, Joel Ullom, Joseph F. Van Der List, Jeff Van Lanen, Michael R. Vissers, Alexis C. Weber, Ingunn K. Wehus, Shyang Wen, Donald V. Wiebe, Edward Y. Young

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Spider is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. Spider has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, Spider was observed in the 95- and 150-GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-2023 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. We describe the instrument's performance during Spider's second flight, focusing on the performance of the 280-GHz receivers. We include details on the flight, in-band optical loading at float, and an early analysis of detector noise.

Original languageEnglish (US)
Article number044012
JournalJournal of Astronomical Telescopes, Instruments, and Systems
Volume10
Issue number4
DOIs
StatePublished - Oct 1 2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Control and Systems Engineering
  • Instrumentation
  • Astronomy and Astrophysics
  • Mechanical Engineering
  • Space and Planetary Science

Keywords

  • S pider
  • cosmic microwave background
  • polarization
  • scientific ballooning
  • transition-edge sensor

Fingerprint

Dive into the research topics of 'In-flight performance of Spider's 280-GHz receivers'. Together they form a unique fingerprint.

Cite this