Improved spectroscopic parameters for transiting planet hosts

Guillermo Torres, Debra A. Fischer, Alessandro Sozzetti, Lars A. Buchhave, Joshua N. Winn, Matthew J. Holman, Joshua A. Carter

Research output: Contribution to journalArticlepeer-review

243 Scopus citations


We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the stellar parameter classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (Spectroscopy Made Easy (SME) and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between T eff, [Fe/H], and log g when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on log g based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius.

Original languageEnglish (US)
Article number161
JournalAstrophysical Journal
Issue number2
StatePublished - Oct 1 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • planetary systems
  • stars: abundances
  • stars: fundamental parameters
  • techniques: spectroscopic


Dive into the research topics of 'Improved spectroscopic parameters for transiting planet hosts'. Together they form a unique fingerprint.

Cite this