Implications of the iron oxide phase transition on the interiors of rocky exoplanets

F. Coppari, R. F. Smith, J. Wang, M. Millot, D. Kim, J. R. Rygg, S. Hamel, J. H. Eggert, T. S. Duffy

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The discovery of an extraordinary number of extrasolar planets, characterized by an unexpected variety of sizes, masses and orbits, challenges our understanding of the formation and evolution of the planets in the Solar System and the perception of the Earth as the prototypical habitable world. Many exoplanets appear to be rocky and yet more massive than the Earth, with expected pressures and temperatures of hundreds of gigapascal and thousands of Kelvin in their deep interiors. At these conditions, the properties of bridgmanite and ferropericlase, expected to dominate their mantles, are largely unconstrained, limiting our knowledge of their interior structure. Here we used nano-second X-ray diffraction and dynamic compression to experimentally investigate the atomic structure and density of iron oxide (FeO), one of the end-members of the (Mg,Fe)O ferropericlase solid solution, up to 700 GPa, a pressure exceeding the core–mantle boundary of a 5 Earth masses planet. Our data document the stability of the high-pressure cesium-chloride B2 structure above 300 GPa, well below the pressure required for magnesium oxide (MgO) to adopt the same phase. These observations, complemented by the calculation of the binary MgO–FeO phase diagram, reveal complex stratification and rheology inside large terrestrial exoplanets.

Original languageEnglish (US)
Pages (from-to)121-126
Number of pages6
JournalNature Geoscience
Volume14
Issue number3
DOIs
StatePublished - Mar 2021

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'Implications of the iron oxide phase transition on the interiors of rocky exoplanets'. Together they form a unique fingerprint.

Cite this