Impact of Ocean Eddy Resolution on the Sensitivity of Precipitation to CO2 Increase

Jie He, Ben Kirtman, Brian J. Soden, Gabriel Andres Vecchi, Honghai Zhang, Michael Winton

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The past few years have seen a growing investment in the development of global eddy-resolving ocean models, but the impact of incorporating such high ocean resolution on precipitation responses to CO2 forcing has yet to be investigated. This study analyzes precipitation changes from a suite of Geophysical Fluid Dynamics Laboratory models incorporating eddy-resolving (0.1°), eddy-permitting (0.25°), and eddy-parameterizing (1°) ocean models. The incorporation of eddy resolution does not challenge the large-scale structure of precipitation changes but results in substantial regional differences, particularly over ocean. These oceanic differences are primarily driven by the pattern of sea surface temperature (SST) changes with greater sensitivity in lower latitudes. The largest impact of ocean resolution on SST changes occurs in eddy-rich regions (e.g., boundary currents and the Southern Ocean), where impact on precipitation changes is also found to various degrees. In the Gulf Stream region where previous studies found considerable impact of eddy resolution on the simulation of climatological precipitation, we do not find such impact from the Geophysical Fluid Dynamics Laboratory models, but we do find substantial impact on precipitation changes. The eddy-parameterizing model projects a banded structure common to the Coupled Model Intercomparison Project (Phase 5) models, whereas the higher-resolution models project a poleward shift of precipitation maxima associated with an enhanced Gulf Stream warming. Over land, precipitation changes are generally not very sensitive to ocean resolution. In eastern North America adjacent to the Gulf Stream region, moderate differences are found between resolutions. We discuss the mechanisms of land differences, which arise through the simulation of both climatological SST and SST changes.

Original languageEnglish (US)
Pages (from-to)7194-7203
Number of pages10
JournalGeophysical Research Letters
Volume45
Issue number14
DOIs
StatePublished - Jul 28 2018

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Earth and Planetary Sciences(all)

Keywords

  • Gulf Stream
  • air-sea interaction
  • high-resolution modeling
  • ocean eddies
  • precipitation changes

Fingerprint

Dive into the research topics of 'Impact of Ocean Eddy Resolution on the Sensitivity of Precipitation to CO2 Increase'. Together they form a unique fingerprint.

Cite this