Immune Checkpoint Blockade Delays Cancer Development and Extends Survival in DNA Polymerase Mutator Syndromes

Akshada Sawant, Fuqian Shi, Eduardo Cararo Lopes, Zhixian Hu, Somer Abdelfattah, Jennele Baul, Jesse R. Powers, Christian S. Hinrichs, Joshua D. Rabinowitz, Chang S. Chan, Edmund C. Lattime, Shridar Ganesan, Eileen P. White

Research output: Contribution to journalArticlepeer-review

Abstract

Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole. Engineered mice with Pold1 and Pole mutator alleles presented with spontaneous cancers, primarily lymphomas, lung cancer, and intestinal tumors, whereas Pold1 mutant mice also developed tail skin carcinomas. These cancers had highly variable tissue type–dependent increased TMB with mutational signatures associated with POLD1 and POLE mutations found in human cancers. The Pold1 mutant tail tumors displayed increased TMB; however, only a subset of established tumors responded to ICB. Similarly, introducing the mutator alleles into mice with lung cancer driven by mutant Kras and Trp53 deletion did not improve survival, whereas passaging these tumor cells in vitro without immune editing and subsequently implanting them into immunocompetent mice caused tumor rejection in vivo. These results demonstrated the efficiency by which cells with antigenic mutations are eliminated in vivo. Finally, ICB treatment of mutator mice earlier, before observable tumors had developed delayed cancer onset, improved survival and selected for tumors without aneuploidy, suggesting the potential of ICB in high-risk individuals for cancer prevention. Significance: Treating high-mutation burden mice with immunotherapy prior to cancer onset significantly improves survival, raising the possibility of utilizing immune checkpoint blockade for cancer prevention, especially in individuals with increased risk.(Picture

Original languageEnglish (US)
Pages (from-to)1130-1144
Number of pages15
JournalCancer Research
Volume85
Issue number6
DOIs
StatePublished - Mar 15 2025

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Immune Checkpoint Blockade Delays Cancer Development and Extends Survival in DNA Polymerase Mutator Syndromes'. Together they form a unique fingerprint.

Cite this