Abstract
We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions of such systems, comprising an optically thick disk with an inner truncation radius of ∼46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21MJup on companions at separations outside of 0. ″1 and of 13MJup outside of 0. ′2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.
Original language | English (US) |
---|---|
Pages (from-to) | L87-L91 |
Journal | Astrophysical Journal Letters |
Volume | 718 |
Issue number | 2 PART 2 |
DOIs | |
State | Published - Aug 1 2010 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Circumstellar matter
- Planetary systems
- Stars :individual (LkCa 15)
- Stars: pre-main sequence
- Techniques: high angular resolution