IFOR: Iterative Flow Minimization for Robotic Object Rearrangement

Ankit Goyal, Arsalan Mousavian, Chris Paxton, Yu Wei Chao, Brian Okorn, Jia Deng, Dieter Fox

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Accurate object rearrangement from vision is a crucial problem for a wide variety of real-world robotics applications in unstructured environments. We propose IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, an end-to-end method for the challenging problem of object rearrangement for unknown objects given an RGBD image of the original and final scenes. First, we learn an optical flow model based on RAFT to estimate the relative transformation of the objects purely from synthetic data. This flow is then used in an iterative minimization algorithm to achieve accurate positioning of previously unseen objects. Crucially, we show that our method applies to cluttered scenes, and in the real world, while training only on synthetic data. Videos are available at h t t ps: //imankgoyal.github.io/ifor.html.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages14767-14777
Number of pages11
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Robot vision
  • Vision applications and systems

Fingerprint

Dive into the research topics of 'IFOR: Iterative Flow Minimization for Robotic Object Rearrangement'. Together they form a unique fingerprint.

Cite this