Abstract
Precise, smooth aerodynamic models are required for implementing adaptive, nonlinear control strategies. Accurate representations of aerodynamic coefficients can be generated for the complete flight envelope by combining computational neural network models with an estimation-before-modeling paradigm for on-line training information. A novel method of incorporating first partial derivative information is employed to estimate the weights in individual feedforward neural networks for each aerodynamic coefficient. The method is demonstrated by generating a model of the normal force coefficient of a twin-jet transport aircraft from simulated flight data, and promising results are obtained.
Original language | English (US) |
---|---|
Pages (from-to) | 1018-1025 |
Number of pages | 8 |
Journal | Journal of Guidance, Control, and Dynamics |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - Nov 1993 |
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
- Applied Mathematics
- Electrical and Electronic Engineering
- Control and Systems Engineering
- Space and Planetary Science