Identification Capacity of Correlation-Assisted Discrete Memoryless Channels: Analytical Properties and Representations

Holger Boche, Rafael F. Schaefer, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

The problem of identification is considered, in which it is of interest for the receiver to decide only whether a certain message has been sent or not. Identification via correlation-assisted discrete memoryless channels is studied, where the transmitter and the receiver further have access to correlated source observations. Analytical properties and representations of the corresponding identification capacity are studied. In this paper, it is shown that the identification capacity cannot be represented as a maximization of a single-letter (or multi-letter with fixed length) expression of entropic quantities. Further, it is shown that the identification capacity is not Banach-Mazur computable and therewith not Turing computable. Consequently, there is no algorithm that can simulate or compute the identification capacity, even if there are no limitations on computational complexity and computing power.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages470-474
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Externally publishedYes
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/7/197/12/19

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Identification Capacity of Correlation-Assisted Discrete Memoryless Channels: Analytical Properties and Representations'. Together they form a unique fingerprint.

Cite this