Hydrophobic nanostructured wood membrane for thermally efficient distillation

Dianxun Hou, Tian Li, Xi Chen, Shuaiming He, Jiaqi Dai, Sohrab A. Mofid, Deyin Hou, Arpita Iddya, David Jassby, Ronggui Yang, Liangbing Hu, Zhiyong Ren

Research output: Contribution to journalArticlepeer-review

89 Scopus citations


Current membrane distillation (MD) is challenged by the inefficiency of water thermal separation from dissolved solutes, controlled by membrane porosity and thermal conductivity. Existing petroleum-derived polymeric membranes face major development barriers. Here, we demonstrate a first robust MD membrane directly fabricated from sustainable wood material. The hydrophobic nanowood membrane had high porosity (89 ± 3%) and hierarchical pore structure with a wide pore size distribution of crystalline cellulose nanofibrils and xylem vessels and lumina (channels) that facilitate water vapor transportation. The thermal conductivity was extremely low in the transverse direction, which reduces conductive heat transport. However, high thermal conductivity along the fiber enables efficient thermal dissipation along the axial direction. As a result, the membrane demonstrated excellent intrinsic vapor permeability (1.44 ± 0.09 kg m−1 K−1 s−1 Pa−1) and thermal efficiency (~70% at 60°C). The properties of thermal efficiency, water flux, scalability, and sustainability make nanowood highly desirable for MD applications.

Original languageEnglish (US)
Article numbereaaw3203
JournalScience Advances
Issue number8
StatePublished - Aug 2 2019

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Hydrophobic nanostructured wood membrane for thermally efficient distillation'. Together they form a unique fingerprint.

Cite this