Hydration structure of flat and stepped MgO surfaces

Zhutian Ding, Annabella Selloni

Research output: Contribution to journalArticlepeer-review

Abstract

We investigate the solvation structure of flat and stepped MgO(001) in neutral liquid water using ab initio molecular dynamics based on a hybrid density functional with dispersion corrections. Our simulations show that the MgO surface is covered by a densely packed layer of mixed intact and dissociated adsorbed water molecules in a planar arrangement with strong intermolecular H-bonds. The water dissociation fractions in this layer are >20% and >30% on the flat and stepped surfaces, respectively. Slightly above the first water layer, we observe metastable OH groups perpendicular to the interface, similar to those reported in low temperature studies of water monolayers on MgO. These species receive hydrogen bonds from four nearby water molecules in the first layer and have their hydrophobic H end directed toward bulk water, while their associated protons are bound to surface oxygens. The formation of these OH species is attributed to the strong basicity of the MgO surface and can be relevant for understanding various phenomena from morphology evolution and growth of (nano)crystalline MgO particles to heterogeneous catalysis.

Original languageEnglish (US)
Article number1147081
JournalJournal of Chemical Physics
Volume154
Issue number11
DOIs
StatePublished - Mar 21 2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Hydration structure of flat and stepped MgO surfaces'. Together they form a unique fingerprint.

Cite this