HYDRA: Pruning adversarially robust neural networks

Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

Research output: Contribution to journalConference articlepeer-review

99 Scopus citations

Abstract

In safety-critical but computationally resource-constrained applications, deep learning faces two key challenges: lack of robustness against adversarial attacks and large neural network size (often millions of parameters). While the research community has extensively explored the use of robust training and network pruning independently to address one of these challenges, only a few recent works have studied them jointly. However, these works inherit a heuristic pruning strategy that was developed for benign training, which performs poorly when integrated with robust training techniques, including adversarial training and verifiable robust training. To overcome this challenge, we propose to make pruning techniques aware of the robust training objective and let the training objective guide the search for which connections to prune. We realize this insight by formulating the pruning objective as an empirical risk minimization problem which is solved efficiently using SGD. We demonstrate that our approach, titled HYDRA1, achieves compressed networks with state-of-the-art benign and robust accuracy, simultaneously. We demonstrate the success of our approach across CIFAR-10, SVHN, and ImageNet dataset with four robust training techniques: iterative adversarial training, randomized smoothing, MixTrain, and CROWN-IBP. We also demonstrate the existence of highly robust sub-networks within non-robust networks.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'HYDRA: Pruning adversarially robust neural networks'. Together they form a unique fingerprint.

Cite this