Abstract
Optically addressable solid-state defects are emerging as some of the most promising qubit platforms for quantum networks. Maximizing photon-defect interaction by nanophotonic cavity coupling is key to network efficiency. We demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide cavities on a silicon oxide carrier and subsequent integration with implanted silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique. The stamping process avoids diamond etching and allows fine-tuning of the cavities prior to integration. After transfer to diamond, we measure cavity quality factors (Q) of up to 8900 and perform resonant excitation of single SiV centers coupled to these cavities. For a cavity with a Q of 4100, we observe a 3-fold lifetime reduction on-resonance, corresponding to a maximum potential cooperativity of C = 2. These results indicate promise for high photon-defect interaction in a platform which avoids fabrication of the quantum defect host crystal.
Original language | English (US) |
---|---|
Pages (from-to) | 3708-3715 |
Number of pages | 8 |
Journal | Nano Letters |
Volume | 23 |
Issue number | 9 |
DOIs | |
State | Published - May 10 2023 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Condensed Matter Physics
- Mechanical Engineering
- Bioengineering
- General Materials Science
Keywords
- Purcell enhancement
- gallium phosphide
- hybrid cavity
- silicon-vacancy center