Hurricane Ida’s blackout-heatwave compound risk in a changing climate

Kairui Feng, Ning Lin, Avantika Gori, Dazhi Xi, Min Ouyang, Michael Oppenheimer

Research output: Contribution to journalArticlepeer-review

Abstract

The emerging tropical cyclone (TC)-blackout-heatwave compound risk under climate change is not well understood. In this study, we employ projections of TCs, sea level rise, and heatwaves, in conjunction with power system resilience modeling, to evaluate historical and future TC-blackout-heatwave compound risk in Louisiana, US. We find that the return period for a compound event comparable to Hurricane Ida (2021), with approximately 35 million customer hours of simultaneous power outage and heatwave exposure in Louisiana, is around 278 years in the historical climate of 1980–2005. Under the SSP5-8.5 emissions scenario, this return period is projected to decrease to 16.2 years by 2070–2100, a ~17 times reduction. Under the SSP2-4.5 scenario, it decreases to 23.1 years, representing a ~12 times reduction. Heatwave intensification is the primary driver of this increased risk, reducing the return period by approximately 5 times under SSP5-8.5 and 3 times under SSP2-4.5. Increased TC activity is the second driver, reducing the return period by 40% and 34% under the respective scenarios. These findings enhance our understanding of compound climate hazards and inform climate adaptation strategies.

Original languageEnglish (US)
Article number4533
JournalNature communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Hurricane Ida’s blackout-heatwave compound risk in a changing climate'. Together they form a unique fingerprint.

Cite this