Human sirtuin 2 localization, transient interactions, and impact on the proteome point to its role in intracellular trafficking

Hanna G. Budayeva, Ileana M. Cristea

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Human sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both labelfree and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin 1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a previously unrecognized involvement in intracellular trafficking pathways, which may contribute to its roles in cellular homeostasis and human diseases.

Original languageEnglish (US)
Pages (from-to)3107-3125
Number of pages19
JournalMolecular and Cellular Proteomics
Volume15
Issue number10
DOIs
StatePublished - Oct 2016

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Molecular Biology
  • Biochemistry

Fingerprint

Dive into the research topics of 'Human sirtuin 2 localization, transient interactions, and impact on the proteome point to its role in intracellular trafficking'. Together they form a unique fingerprint.

Cite this