Abstract
We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit withWide Field Camera 3 using the G141 lowresolution grism to cover thewavelength range 1.087-1.678μm. These time series observations were taken with the newly available spatial-scan mode that increases the duty cycle by nearly a factor of 2, thus improving the resulting photometric precision of the data. We measure a planetto-star radius ratio of Rp/R* = 0.117 09 ± 0.000 38 in the white light curve with the centre of transit occurring at 245 6114.345 ± 0.000 133 (JD). We achieve S/N levels per exposure of 1840 (0.061 per cent) at a resolution of δλ = 19.2 nm (R ~ 70) in the 1.1173-1.6549 μm spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultant transmission spectrum shows a significant absorption above the 5s level matching the 1.4 μm water absorption band. In solar composition models, the water absorption is sensitive to the ~1 m bar pressure levels at the terminator. The detected absorption agrees with that predicted by a 1000K isothermal model, as well as with that predicted by a planetary-averaged temperature model.
Original language | English (US) |
---|---|
Pages (from-to) | 3481-3493 |
Number of pages | 13 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 435 |
Issue number | 4 |
DOIs | |
State | Published - Nov 2013 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Planetary systems
- Planets and satellites: atmospheres
- Techniques: Spectroscopic