How to store a random walk

Emanuele Viola, Omri Weinstein, Huacheng Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Motivated by storage applications, we study the following data structure problem: An encoder wishes to store a collection of jointly-distributed files X := (X1, X2, . . ., Xn) ∼ µ which are correlated (Hµ(X) ≪ ∑ i Hµ(Xi)), using as little (expected) memory as possible, such that each individual file Xi can be recovered quickly with few (ideally constant) memory accesses. In the case of independent random files, a dramatic result by Pǎtraşcu (FOCS'08) and subsequently by Dodis, Pǎtraşcu and Thorup (STOC'10) shows that it is possible to store X using just a constant number of extra bits beyond the information-theoretic minimum space, while at the same time decoding each Xi in constant time. However, in the (realistic) case where the files are correlated, much weaker results are known, requiring at least Ω(n/poly lg n) extra bits for constant decoding time, even for “simple” joint distributions µ. We focus on the natural case of compressing Markov chains, i.e., storing a length-n random walk on any (possibly directed) graph G. Denoting by κ(G, n) the number of length-n walks on G, we show that there is a succinct data structure storing a random walk using lg2 κ(G, n) + O(lg n) bits of space, such that any vertex along the walk can be decoded in O(1) time on a word-RAM. If the graph is strongly connected (e.g., undirected), the space can be improved to only lg2 κ(G, n) + 5 extra bits. For the harder task of matching the point-wise optimal space of the walk, i.e., the empirical entropy ∑ ni=11 lg(deg(vi)), we present a data structure with O(1) extra bits at the price of O(lg n) decoding time, and show that any improvement on this would lead to an improved solution on the long-standing Dictionary problem. All of our data structures support the online version of the problem with constant update and query time.

Original languageEnglish (US)
Title of host publication31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
EditorsShuchi Chawla
PublisherAssociation for Computing Machinery
Number of pages20
ISBN (Electronic)9781611975994
StatePublished - 2020
Event31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, United States
Duration: Jan 5 2020Jan 8 2020

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms


Conference31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
Country/TerritoryUnited States
CitySalt Lake City

All Science Journal Classification (ASJC) codes

  • Software
  • General Mathematics


Dive into the research topics of 'How to store a random walk'. Together they form a unique fingerprint.

Cite this