Abstract
The question of which global minima are accessible by a stochastic gradient decent (SGD) algorithm with specific learning rate and batch size is studied from the perspective of dynamical stability. The concept of non-uniformity is introduced, which, together with sharpness, characterizes the stability property of a global minimum and hence the accessibility of a particular SGD algorithm to that global minimum. In particular, this analysis shows that learning rate and batch size play different roles in minima selection. Extensive empirical results seem to correlate well with the theoretical findings and provide further support to these claims.
Original language | English (US) |
---|---|
Pages (from-to) | 8279-8288 |
Number of pages | 10 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing