@inproceedings{96a5c4d6d9fb4aeea9e2731303fe5169,
title = "How Potent are Evasion Attacks for Poisoning Federated Learning-Based Signal Classifiers?",
abstract = "There has been recent interest in leveraging federated learning (FL) for radio signal classification tasks. In FL, model parameters are periodically communicated from participating devices, training on their own local datasets, to a central server which aggregates them into a global model. While FL has privacy/security advantages due to raw data not leaving the devices, it is still susceptible to several adversarial attacks. In this work, we reveal the susceptibility of FL-based signal classifiers to model poisoning attacks, which compromise the training process despite not observing data transmissions. In this capacity, we develop an attack framework in which compromised FL devices perturb their local datasets using adversarial evasion attacks. As a result, the training process of the global model significantly degrades on in-distribution signals (i.e., signals received over channels with identical distributions at each edge device). We compare our work to previously proposed FL attacks and reveal that as few as one adversarial device operating with a low-powered perturbation under our attack framework can induce the potent model poisoning attack to the global classifier. Moreover, we find that more devices partaking in adversarial poisoning will proportionally degrade the classification performance.",
keywords = "Adversarial attacks, automatic modulation classification, deep learning, federated learning, privacy, security",
author = "Su Wang and Rajeev Sahay and Brinton, {Christopher G.}",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 2023 IEEE International Conference on Communications, ICC 2023 ; Conference date: 28-05-2023 Through 01-06-2023",
year = "2023",
doi = "10.1109/ICC45041.2023.10279348",
language = "English (US)",
series = "IEEE International Conference on Communications",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2376--2381",
editor = "Michele Zorzi and Meixia Tao and Walid Saad",
booktitle = "ICC 2023 - IEEE International Conference on Communications",
address = "United States",
}