TY - GEN
T1 - How Important is the Train-Validation Split in Meta-Learning?
AU - Bai, Yu
AU - Chen, Minshuo
AU - Zhou, Pan
AU - Zhao, Tuo
AU - Lee, Jason D.
AU - Kakade, Sham
AU - Wang, Huan
AU - Xiong, Caiming
N1 - Publisher Copyright:
Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - Meta-learning aims to perform fast adaptation on a new task through learning a “prior” from multiple existing tasks. A common practice in meta-learning is to perform a train-validation split (train-val method) where the prior adapts to the task on one split of the data, and the resulting predictor is evaluated on another split. Despite its prevalence, the importance of the train-validation split is not well understood either in theory or in practice, particularly in comparison to the more direct train-train method, which uses all the per-task data for both training and evaluation. We provide a detailed theoretical study on whether and when the train-validation split is helpful in the linear centroid meta-learning problem. In the agnostic case, we show that the expected loss of the train-val method is minimized at the optimal prior for meta testing, and this is not the case for the train-train method in general without structural assumptions on the data. In contrast, in the realizable case where the data are generated from linear models, we show that both the train-val and train-train losses are minimized at the optimal prior in expectation. Further, perhaps surprisingly, our main result shows that the train-train method achieves a strictly better excess loss in this realizable case, even when the regularization parameter and split ratio are optimally tuned for both methods. Our results highlight that sample splitting may not always be preferable, especially when the data is realizable by the model. We validate our theories by experimentally showing that the train-train method can indeed outperform the train-val method, on both simulations and real meta-learning tasks.
AB - Meta-learning aims to perform fast adaptation on a new task through learning a “prior” from multiple existing tasks. A common practice in meta-learning is to perform a train-validation split (train-val method) where the prior adapts to the task on one split of the data, and the resulting predictor is evaluated on another split. Despite its prevalence, the importance of the train-validation split is not well understood either in theory or in practice, particularly in comparison to the more direct train-train method, which uses all the per-task data for both training and evaluation. We provide a detailed theoretical study on whether and when the train-validation split is helpful in the linear centroid meta-learning problem. In the agnostic case, we show that the expected loss of the train-val method is minimized at the optimal prior for meta testing, and this is not the case for the train-train method in general without structural assumptions on the data. In contrast, in the realizable case where the data are generated from linear models, we show that both the train-val and train-train losses are minimized at the optimal prior in expectation. Further, perhaps surprisingly, our main result shows that the train-train method achieves a strictly better excess loss in this realizable case, even when the regularization parameter and split ratio are optimally tuned for both methods. Our results highlight that sample splitting may not always be preferable, especially when the data is realizable by the model. We validate our theories by experimentally showing that the train-train method can indeed outperform the train-val method, on both simulations and real meta-learning tasks.
UR - http://www.scopus.com/inward/record.url?scp=85127553047&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127553047&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85127553047
T3 - Proceedings of Machine Learning Research
SP - 543
EP - 553
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
T2 - 38th International Conference on Machine Learning, ICML 2021
Y2 - 18 July 2021 through 24 July 2021
ER -