How cognitive and reactive fear circuits optimize escape decisions in humans

Song Qi, Demis Hassabis, Jiayin Sun, Fangjian Guo, Nathaniel Daw, Dean Mobbs

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Flight initiation distance (FID), the distance at which an organism flees from an approaching threat, is an ecological metric of cost- benefit functions of escape decisions. We adapted the FID paradigm to investigate how fast- or slow-attacking "virtual predators" constrain escape decisions. We show that rapid escape decisions rely on "reactive fear" circuits in the periaqueductal gray and midcingulate cortex (MCC), while protracted escape decisions, defined by larger buffer zones, were associated with "cognitive fear" circuits, which include posterior cingulate cortex, hippocampus, and the ventromedial prefrontal cortex, circuits implicated in more complex information processing, cognitive avoidance strategies, and behavioral flexibility. Using a Bayesian decision-making model, we further show that optimization of escape decisions under rapid flight were localized to the MCC, a region involved in adaptive motor control, while the hippocampus is implicated in optimizing decisions that update and control slower escape initiation. These results demonstrate an unexplored link between defensive survival circuits and their role in adaptive escape decisions.

Original languageEnglish (US)
Pages (from-to)3186-3191
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume115
Issue number12
DOIs
StatePublished - Mar 20 2018

All Science Journal Classification (ASJC) codes

  • General

Keywords

  • Anxiety
  • Decision making
  • Ecology
  • Escape
  • Fear

Fingerprint

Dive into the research topics of 'How cognitive and reactive fear circuits optimize escape decisions in humans'. Together they form a unique fingerprint.

Cite this