Abstract
We prove Homological Mirror Symmetry for a smooth (Formula presented.) (for example, (Formula presented.) is the quintic threefold). The main techniques involved in the proof are: the construction of an immersed Lagrangian sphere in the ‘(Formula presented.)-dimensional pair of pants’; the introduction of the ‘relative Fukaya category’, and an understanding of its grading structure; a description of the behaviour of this category with respect to branched covers (via an ‘orbifold’ Fukaya category); a Morse–Bott model for the relative Fukaya category that allows one to make explicit computations; and the introduction of certain graded categories of matrix factorizations mirror to the relative Fukaya category.
Original language | English (US) |
---|---|
Pages (from-to) | 1-186 |
Number of pages | 186 |
Journal | Inventiones Mathematicae |
Volume | 199 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2014 |
All Science Journal Classification (ASJC) codes
- General Mathematics