Homogeneous ice nucleation in an ab initio machine-learning model of water

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Molecular simulations have provided valuable insight into the microscopic mechanisms underlying homogeneous ice nucleation. While empirical models have been used extensively to study this phenomenon, simulations based on first-principles calculations have so far proven prohibitively expensive. Here, we circumvent this difficulty by using an efficient machine-learning model trained on density-functional theory energies and forces. We compute nucleation rates at atmospheric pressure, over a broad range of supercoolings, using the seeding technique and systems of up to hundreds of thousands of atoms simulated with ab initio accuracy. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or melting at the given supersaturation), which is used together with the equations of classical nucleation theory to compute nucleation rates. We find that nucleation rates for our model at moderate supercoolings are in good agreement with experimental measurements within the error of our calculation. We also study the impact of properties such as the thermodynamic driving force, interfacial free energy, and stacking disorder on the calculated rates.

Original languageEnglish (US)
Article numbere2207294119
JournalProceedings of the National Academy of Sciences of the United States of America
Volume119
Issue number33
DOIs
StatePublished - Aug 16 2022

All Science Journal Classification (ASJC) codes

  • General

Keywords

  • density-functional theory
  • ice nucleation
  • machine learning
  • molecular dynamics
  • water

Fingerprint

Dive into the research topics of 'Homogeneous ice nucleation in an ab initio machine-learning model of water'. Together they form a unique fingerprint.

Cite this