TY - JOUR
T1 - Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout
AU - Zhao, Shuai
AU - Chuh, Kelly N.
AU - Zhang, Baichao
AU - Dul, Barbara E.
AU - Thompson, Robert E.
AU - Farrelly, Lorna A.
AU - Liu, Xiaohui
AU - Xu, Ning
AU - Xue, Yi
AU - Roeder, Robert G.
AU - Maze, Ian
AU - Muir, Tom W.
AU - Li, Haitao
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/2/9
Y1 - 2021/2/9
N2 - Serotonylation of glutamine 5 on histone H3 (H3Q5ser) was recently identified as a permissive posttranslational modification that coexists with adjacent lysine 4 trimethylation (H3K4me3). While the resulting dual modification, H3K4me3Q5ser, is enriched at regions of active gene expression in serotonergic neurons, the molecular outcome underlying H3K4me3-H3Q5ser crosstalk remains largely unexplored. Herein, we examine the impact of H3Q5ser on the readers, writers, and erasers of H3K4me3. All tested H3K4me3 readers retain binding to the H3K4me3Q5ser dual modification. Of note, the PHD finger of TAF3 favors H3K4me3Q5ser, and this binding preference is dependent on the Q5ser modification regardless of H3K4 methylation states. While the activity of the H3K4 methyltransferase, MLL1, is unaffected by H3Q5ser, the corresponding H3K4me3/2 erasers, KDM5B/C and LSD1, are profoundly inhibited by the presence of the mark. Collectively, this work suggests that adjacent H3Q5ser potentiates H3K4me3 function by either stabilizing H3K4me3 from dynamic turnover or enhancing its physical readout by downstream effectors, thereby potentially providing a mechanism for fine-tuning critical gene expression programs.
AB - Serotonylation of glutamine 5 on histone H3 (H3Q5ser) was recently identified as a permissive posttranslational modification that coexists with adjacent lysine 4 trimethylation (H3K4me3). While the resulting dual modification, H3K4me3Q5ser, is enriched at regions of active gene expression in serotonergic neurons, the molecular outcome underlying H3K4me3-H3Q5ser crosstalk remains largely unexplored. Herein, we examine the impact of H3Q5ser on the readers, writers, and erasers of H3K4me3. All tested H3K4me3 readers retain binding to the H3K4me3Q5ser dual modification. Of note, the PHD finger of TAF3 favors H3K4me3Q5ser, and this binding preference is dependent on the Q5ser modification regardless of H3K4 methylation states. While the activity of the H3K4 methyltransferase, MLL1, is unaffected by H3Q5ser, the corresponding H3K4me3/2 erasers, KDM5B/C and LSD1, are profoundly inhibited by the presence of the mark. Collectively, this work suggests that adjacent H3Q5ser potentiates H3K4me3 function by either stabilizing H3K4me3 from dynamic turnover or enhancing its physical readout by downstream effectors, thereby potentially providing a mechanism for fine-tuning critical gene expression programs.
KW - Designer chromatin
KW - H3K4me3
KW - H3Q5 serotonylation
KW - Histone modification
KW - Modification crosstalk
UR - http://www.scopus.com/inward/record.url?scp=85100614908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100614908&partnerID=8YFLogxK
U2 - 10.1073/pnas.2016742118
DO - 10.1073/pnas.2016742118
M3 - Article
C2 - 33526675
AN - SCOPUS:85100614908
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 6
M1 - e2016742118
ER -