Highly Transparent, Scalable, and Stable Perovskite Solar Cells with Minimal Aesthetic Compromise

Tianran Liu, Xiaoming Zhao, Ping Wang, Quinn C. Burlingame, Junnan Hu, Kwangdong Roh, Zhaojian Xu, Barry P. Rand, Minjie Chen, Yueh Lin Loo

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Transparent photovoltaics (TPVs) can be integrated into the surfaces of buildings and vehicles to provide point-of-use power without impacting aesthetics. Unlike TPVs that target the photon-rich near-infrared portion of the solar spectrum, TPVs that harvest ultraviolet (UV) photons can have significantly higher transparency and color neutrality, offering a superior solution for low-power electronics with stringent aesthetic tolerance. In addition to being highly transparent and colorless, an ideal UV-absorbing TPV should also be operationally stable and scalable over large areas while still outputting sufficient power for its specified application. None of today's TPVs meet all these criteria simultaneously. Here, the first UV-absorbing TPV is demonstrated that satisfies all four criteria by using CsPbCl2.5Br0.5 as the absorber. By precisely tuning the halide ratio during thermal co-evaporation, high-quality large-area perovskite films can be accessed with an ideal absorption cutoff for aesthetic performance. The resulting TPVs exhibit a record average visible transmittance of 84.6% and a color rendering index of 96.5, while maintaining an output power density of 11 W m−2 under one-sun illumination. Further, the large-area prototypes up to 25 cm2 are demonstrated, that are operationally stable with extrapolated lifetimes of >20 yrs under outdoor conditions.

Original languageEnglish (US)
Article number2200402
JournalAdvanced Energy Materials
Volume13
Issue number33
DOIs
StatePublished - Sep 1 2023

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Keywords

  • color neutrality
  • inorganic perovskites
  • stability
  • thermal evaporation
  • transparent solar cells

Fingerprint

Dive into the research topics of 'Highly Transparent, Scalable, and Stable Perovskite Solar Cells with Minimal Aesthetic Compromise'. Together they form a unique fingerprint.

Cite this