High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species

Molly Schumer, Rongfeng Cui, Daniel L. Powell, Rebecca Dresner, Gil G. Rosenthal, Peter Andolfatto

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species.

Original languageEnglish (US)
Article numbere02535
JournaleLife
Volume2014
Issue number3
DOIs
StatePublished - Jun 4 2014

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species'. Together they form a unique fingerprint.

Cite this