TY - JOUR
T1 - High-power inter-miniband lasing in intrinsic superlattices
AU - Tredicucci, Alessandro
AU - Capasso, Federico
AU - Gmachl, Claire
AU - Sivco, Deborah L.
AU - Hutchinson, Albert L.
AU - Cho, Alfred Y.
AU - Faist, Jérome
AU - Scamarcio, Gaetano
PY - 1998
Y1 - 1998
N2 - We report the realization of a mid-infrared (λ≃7μm) quantum-cascade laser, in which the emission process takes place between the two lowest minibands of an intrinsic superlattice. Contrary to previous lasers based on doped superlattices, here the dopants are located only inside suitably designed injector regions, where positive ionized donors and negative electrons are arranged to compensate the applied external field across the superlattices. This reduces impurity scattering and translates into low threshold currents (4.2kA/cm2 at 10 K) and into room temperature operation, without compromising the large current-carrying capabilities of the minibands. Peak powers of ∼1.3W per facet have been obtained from broad-area devices at 10 K, with still more than 1 W at 120 K and 400 mW at 200 K. Effects related to the finite size of the superlattices become visible in the spectral properties, owing to the reduced broadening, and have to be taken into account to accurately describe the laser's behavior.
AB - We report the realization of a mid-infrared (λ≃7μm) quantum-cascade laser, in which the emission process takes place between the two lowest minibands of an intrinsic superlattice. Contrary to previous lasers based on doped superlattices, here the dopants are located only inside suitably designed injector regions, where positive ionized donors and negative electrons are arranged to compensate the applied external field across the superlattices. This reduces impurity scattering and translates into low threshold currents (4.2kA/cm2 at 10 K) and into room temperature operation, without compromising the large current-carrying capabilities of the minibands. Peak powers of ∼1.3W per facet have been obtained from broad-area devices at 10 K, with still more than 1 W at 120 K and 400 mW at 200 K. Effects related to the finite size of the superlattices become visible in the spectral properties, owing to the reduced broadening, and have to be taken into account to accurately describe the laser's behavior.
UR - http://www.scopus.com/inward/record.url?scp=0032069211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032069211&partnerID=8YFLogxK
U2 - 10.1063/1.121365
DO - 10.1063/1.121365
M3 - Article
AN - SCOPUS:0032069211
SN - 0003-6951
VL - 72
SP - 2388
EP - 2390
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 19
ER -