Abstract
The development of organic electrochemical transistors (OECTs) capable of maintaining their high amplification, fast transient speed, and operational stability in harsh environments will advance the growth of next-generation wearable and biological electronics. In this study, a high-performance solid-state OECT (SSOECT) is successfully demonstrated, showing a recorded high transconductance of 220 ± 59 S cm−1, ultrafast device speed of ≈10 kHz with excellent operational stability over 10 000 switching cycles, and thermally stable under a wide temperature range from −50 to 110 °C. The developed SSOECTs are successfully used to detect low-amplitude physiological signals, showing a high signal-to-noise-ratio of 32.5 ± 2.1 dB. For the first time, the amplifying power of these SSOECTs is also retained and reliably shown to collect high-quality electrophysiological signals even under harsh temperatures (−50 and 110 °C). The demonstration of high-performing SSOECTs and its application in harsh environment are core steps toward their implementation in next-generation wearable electronics and bioelectronics.
Original language | English (US) |
---|---|
Article number | 2209354 |
Journal | Advanced Functional Materials |
Volume | 33 |
Issue number | 3 |
DOIs | |
State | Published - Jan 16 2023 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Biomaterials
- General Materials Science
- Condensed Matter Physics
- Electrochemistry
Keywords
- glycolated polythiophene
- ion-gels
- organic electrochemical transistors
- solid-state electrolytes
- temperature resilient
- wearable electronics